Role of crab herbivory in die-off of New England salt marshes.
نویسندگان
چکیده
Die-offs of cordgrass are pervasive throughout western Atlantic salt marshes, yet understanding of the mechanisms precipitating these events is limited. We tested whether herbivory by the native crab, Sesarma reticulatum, is generating die-offs of cordgrass that are currently occurring on Cape Cod, Massachusetts (U.S.A.), by manipulating crab access to cordgrass transplanted into die-off areas and healthy vegetation. We surveyed 12 Cape Cod marshes to investigate whether the extent of cordgrass die-off on creek banks, where die-offs are concentrated, was related to local Sesarma grazing intensity and crab density. We then used archived aerial images to examine whether creek bank die-off areas have expanded over the past 2 decades and tested the hypothesis that release from predation, leading to elevated Sesarma densities, is triggering cordgrass die-offs by tethering crabs where die-offs are pervasive and where die-offs have not yet been reported. Intensity of crab grazing on transplanted cordgrass was an order of magnitude higher in die-off areas than in adjacent vegetation. Surveys revealed that Sesarma herbivory has denuded nearly half the creek banks in Cape Cod marshes, and differences in crab-grazing intensity among marshes explained >80% of variation in the extent of the die-offs. Moreover, the rate of die-off expansion and area of marsh affected have more than doubled since 2000. Crab-tethering experiments suggest that release from predation has triggered elevated crab densities that are driving these die-offs, indicating that disruption of predator-prey interactions may be generating the collapse of marsh ecosystems previously thought to be exclusively under bottom-up control.
منابع مشابه
Substrate mediates consumer control of salt marsh cordgrass on Cape Cod, New England.
Cordgrass die-offs in Cape Cod, Massachusetts, USA, salt marshes have challenged the view that the primary production of New England salt marshes is controlled by physical factors. These die-offs have increased dramatically over the last decade and are caused by the common herbivorous marsh crab Sesarma reticulatum, but other factors that control crab impacts remain unclear. We examined the inf...
متن کاملNew England Salt Marsh Recovery: Opportunistic Colonization of an Invasive Species and Its Non-Consumptive Effects
Predator depletion on Cape Cod (USA) has released the herbivorous crab Sesarmareticulatum from predator control leading to the loss of cordgrass from salt marsh creek banks. After more than three decades of die-off, cordgrass is recovering at heavily damaged sites coincident with the invasion of green crabs (Carcinusmaenas) into intertidal Sesarma burrows. We hypothesized that Carcinus is depen...
متن کاملBelowground herbivory increases vulnerability of New England salt marshes to die-off.
Belowground herbivory is commonly overlooked as a mechanism of top-down control in vegetated habitats, particularly in aquatic ecosystems. Recent research has revealed that increased densities of the herbivorous crab Sesarma reticulatum have led to runaway herbivory and widespread salt marsh die-off on Cape Cod, Massachusetts, USA. Aboveground herbivory is a major driver of this cordgrass habit...
متن کاملFeedbacks underlie the resilience of salt marshes and rapid reversal of consumer-driven die-off.
Understanding ecosystem resilience to human impacts is critical for conservation and restoration. The large-scale die-off of New England salt marshes was triggered by overfishing and resulted from decades of runaway crab grazing. In 2009, however, cordgrass began to recover, decreasing die-off -40% by 2010. We used surveys and experiments to test whether plant-substrate feedbacks underlie marsh...
متن کاملMultiple stressors and the potential for synergistic loss of New England salt marshes
Climate change and other anthropogenic stressors are converging on coastal ecosystems worldwide. Understanding how these stressors interact to affect ecosystem structure and function has immediate implications for coastal planning, however few studies quantify stressor interactions. We examined past and potential future interactions between two leading stressors on New England salt marshes: sea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Conservation biology : the journal of the Society for Conservation Biology
دوره 23 3 شماره
صفحات -
تاریخ انتشار 2009